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Abstract

The Diels—Alder adduct of furfuryl alcohol and maleic anhydride was converted into a 3,4,5-trihydroxy-9-
oxo-8-oxabicyclo[4.3.0]non-1(6)-ene-2-carboxylic derivative, then into polyhydroxylated systems containing three
contiguous, oxidized, one-carbon side-chains that are potential intermediates in the synthesis of 6-epi-squalestatins
and analogues. © 1999 Elsevier Science Ltd. All rights reserved.
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In 1992, the Merck group, the Glaxo group and authors from the University of Tokyo Noko reported
independently the discovery of new, potent inhibitors of squalene synthase and farnesyl-protein transfe-
rase named zaragozic acids or squalestatins (e.g. zaragozic acid A, 1). These compounds have in common
a polyhydroxylated 2,8-dioxabicyclo[3.2.1]octane core bearing three contiguous carboxylic groups.!
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Already seven total syntheses of squalestatins have appeared? as well as several reports describing
efforts toward the preparation of these compounds and analogues.® Recently, Nagaoka and co-workers*
have apprcached the synthesis of the core of squalestatins starting from the Diels—Alder adduct of furan-
2,5-dimethanol and dimethyl acetylenedicarboxylate. Their report urges us to disclose our own efforts
toward the total synthesis of squalestatins based on the Diels—Alder adduct (+)-3 of furfuryl alcohol (2)
and maleic anhydride. This choice of starting material was motivated by the fact that adduct (+)-6 of
furfuryl (1S)-camphanate ((+)-5) and maleic anhydride is highly diastereoselective under conditions of
thermodynamic control, allowing one to generate in one step the 7-oxabicyclo[2.2.1]heptene derivative
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(~)-4 enantiomerically pure,’ a system that possesses all the carbon atoms of the bicyclic core of the
squalestatins. We report here reactions that convert (+)-4 into potential synthetic precursors of 6-epi-
squalestatins and analogues.
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Double hydroxylation of the alkene moiety of (+)-4 was highly exo face selective using
H,0O,/acetone/OsOy4 cat. giving the corresponding diol that was silylated with (+-Bu)Me,SiCl and
imidazole into 7 (80%). Regioselective based-induced etheral bridge opening of 7 was possible by
adding slowly a 1 M solution of (Me3Si);NLi in THF to a THF solution of 7 cooled to —78°C. This
provided 8 in 99% yield after purification. Epimerization of the ester 8 was observed when the addition of
the (Me3Si);NLi addition was too fast. The high regioselectivity of the isomerization 7— 8 is remarkable.
It is probably the manifestation of the greater ring strain relief for reaction 7— 8 than for the alternative
isomerization 7—9. Double hydroxylation of the tetrasubstituted olefinic moiety of 8 was possible with
Me;NO and OsOy4 (cat.),’ but the yield of the corresponding triol never surpassed 36%. Esterification of
alcohol 8 with CH3SO,Cl/pyridine in CH,;Cl, (20°C, 15 h) afforded the mesylate 10 (94% yield). This
was dihydroxylated with NalO4 and RuCls hydrate (cat.)® in a mixture of MeCN/EtOAc/H,O (20°C, 2
h) into diol 11 that was not isolated as its purification by flash chromatography on Florisil liberated the
product of mesylic acid elimination 12 isolated in 60% yield.” The trans relative configuration of the
diol and bis(silyloxy) substituent pairs in 11 and 12 was established as shown below. Molecular models
suggest that the stereoselectivity observed for reaction 10 — 11 is due to a steric factor, the face of the
alkene moiety anti to the silyloxy and methoxycarbonyl groups being less sterically hindered than the
syn face.
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Treatment of diol 12 with (MeO),CH; and P,0s gave the methylidene acetal 13 (88% yield). Attempts
to cleave the trisubstituted alkene unit 13 with ozone all failed. We thus exposed 13 to Me3NO and OsO4
(cat.) in 8:1 acetone:water; this led to diol 14 (95% yield) with high diastereoselectivity, the latter being
not yet established unambiguously. Oxidative cleavage of diol 14 with Pb(OAc)s® in CH,Cl, (25°C)
provided oxoaldehyde 15 (95% yield).® Reaction of 15 with allyl bromide and indium!® gave a mixture
of aldoses that were acetylated (Ac,O/pyridine, 25°C) into acylal 16 (45% yield).ll Its configuration at
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C-2 has not been established, that at C-7 was given by 3J(H-6, H-7)=8.3 Hz in its '"H NMR spectrum.
Allylation of 15 with allyltributyltin in the presence of BF3-Et,0!? furnished ulose 17 (one major
anomer, 42% yield),!? the relative configuration of which at C-6 was given by 3J(H-6, H-7)=9 Hz in
its 'H NMR spectrum. The 2D NOESY 'H NMR spectrum of 17 showed cross-peaks that confirmed the
structures of 17 and of its precursors (cis—syn dihydroxylation 10 —11).

Chemoselective reduction of oxoaldehyde 15 was possible with NaBH(AcO); in THF* (20°C, 3
h) giving hemiacetal 18 (one major anomer, 90% yield)!> resulting from the reduction of the keto
moiety activated by the x-carboxylic function. The relative configuration of C-4 was confirmed by the
observation of NOE’s between signals at 6y 4.79 (H-4), 4.42 (H-7) and 3.89 ppm (H-8) in the 2D NOESY
'H NMR spectrum of 18. Except for the y-lactone part, compound 18 has the same ‘oxidation state’ (type
of oxy-substitution) as the core of 6-epi-squalestatins.

NaBH(AcO),
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Allylation of 18 with allyl bromide and indium provided 19 (70% yield) which was oxidized
(Dess-Martin periodinane!®) into diketone 20. Treatment of 20 with NaBH(AcO); failed to give the
corresponding hydroxyketone, probably because of a competitive intramolecular aldol condensation.
Catalytic hydrogenation of 20 (H,/Pd-C), followed by treatment with NaBH(AcO);3 in THF generated 21
(94% yield, two steps).!”-18

Our report discloses procedures for the selective oxy-substitution and ethereal ring opening of 7-
oxabicyclo[2.2.1]heptene (+)-4, generating a variety of polyhydroxylated cyclohexenes and cyclohex-
anes bearing three contiguous, oxidized, one-carbon side-chains. Some of these systems are potential
intermediates for the synthesis of 7-epi-squalestalins and analogues. The latter can be prepared optically
pure in both enantiomeric forms as (+)-4 and (—)-4 are both readily available.’
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